Archived Issues

We congratulate you on acceptance of your manuscript.

EmrAB-TolC Protein Complex in E. coli: Computational and Experimental Approaches

January 10, 2025

 


Abstract: 

The CDC reports that over two million people in the United States alone become infected with antibiotic resistant bacteria. This paper studies one of the primary mechanisms of antibiotic resistance, efflux, in Escherichia coli. EmrA and EmrB proteins, belonging to the efflux pump EmrAB-TolC were purified in two types of competent cells to evaluate the methodology of the protein purification procedure. Analysis of each purified protein was completed using a variety of standard wet lab techniques. The structure of the complex was determined using artificial intelligence-based structure prediction software. This project presents effective methods for the purification of EmrAB and presents a model that reveals C9 homo-oligomeric arrangement of subunit EmrA in complex with a dimeric EmrB. Basic ligand binding assays were completed with known substrates in silico. Confirming protein purification methods allow future research to continue in vitro, with the eventual goal of experimentally determining the complex at a high resolution and aid in the future identification of drug targets and development of EmrAB-TolC protein inhibitors.


References

  1. Amaral L, Martins A, Spengler G, & Molnar J (2014). Efflux pumps of Gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front. Pharmacol. 2014 Jan 3;4:168. doi: 10.3389/fphar.2013.00168. 

  2. Anderson AC. (2003). The process of structure-based drug design. Chem Biol. 10(9):787-97. doi: 10.1016/j.chembiol.2003.09.002. 

  3. Anes J, McCusker MP, Fanning S, Martins M. (2015). The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol. 10;6:587. doi: 10.3389/fmicb.2015.00587.

  4. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. (2015). Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 13(1):42-51. doi: 10.1038/nrmicro3380.

  5. Borges-Walmsley MI, Beauchamp J, Kelly SM, Jumel K, Candlish D, Harding SE, Price NC, Walmsley AR. (2003). Identification of oligomerization and drug-binding domains of the membrane fusion protein EmrA. J Biol Chem. 278(15):12903-12. doi: 10.1074/jbc.M209457200. 

  6. Carattoli A. (2013). Plasmids and the spread of resistance. Int J Med Microbiol. 303(6-7):298-304. doi: 10.1016/j.ijmm.2013.02.001.

  7. CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. 

  8. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. (2020) Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure. 28(9):1071-1081.e3. doi: 10.1016/j.str.2020.06.006. 

  9. Dumon-Seignovert L, Cariot G, Vuillard L. (2004). The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif. 37(1):203-6. doi: 10.1016/j.pep.2004.04.025.18

  10. Furukawa H, Tsay JT, Jackowski S, Takamura Y, Rock CO. (1993). Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J Bacteriol. 175(12):3723-9. doi: 10.1128/jb.175.12.3723-3729.1993. 

  11. General protocol for western blotting - bio-rad laboratories. (n.d.). Retrieved from https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6376.pdf

  12. Griffith JM, Basting PJ, Bischof KM, Wrona EP, Kunka KS, Tancredi AC, Moore JP, Hyman MRL, Slonczewski JL. (2019). Experimental Evolution of Escherichia coli K-12 in the Presence of Proton Motive Force (PMF) Uncoupler Carbonyl Cyanide m-Chlorophenylhydrazone Selects for Mutations Affecting PMF-Driven Drug Efflux Pumps. Appl Environ Microbiol. 85(5):e02792-18. doi: 10.1128/AEM.02792-18. PMID: 30578262; PMCID: PMC6384104. 

  13. Grosdidier A, Zoete V, Michielin O. (2011) Fast docking using the CHARMM force field with EADock DSS. J Comput Chem. 32(10):2149-59. doi: 10.1002/jcc.21797.

  14. Grosdidier A, Zoete V, Michielin O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39(Web Server issue):W270-7. doi: 10.1093/nar/gkr366. 

  15. Helling RB, Janes BK, Kimball H, Tran T, Bundesmann M, Check P, Phelan D, Miller C. (2002). Toxic waste disposal in Escherichia coli. J Bacteriol. 184(13):3699-703. doi: 10.1128/JB.184.13.3699-3703.2002. 

  16. Hinchliffe, P., Greene, N.P.., Paterson, N.G., Crow, A., Hughes, C., & Koronakis, V. (2014). Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump, FEBS Letters, 588, doi: 10.1016/j.febslet.2014.06.055

  17. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873):583-589. doi: 10.1038/s41586-021-03819-2. 

  18. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature. 405(6789):914-9. doi: 10.1038/35016007. 

  19. Kozakov D, Beglov D, Bohnuud T, Mottarella S, Xia B, Hall DR, Vajda, S. (2013). How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics. 81(12):2159-66. doi: 10.1002/prot.24403. 

  20. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols. 12(2):255-278. Doi: 10.1038/nprot.2016.169. 

  21. Levy ED, Teichmann S. (2013). Structural, evolutionary, and assembly principles of protein oligomerization. Prog Mol Biol Transl Sci. 117:25-51. doi: 10.1016/B978-0-12-386931-9.00002-7. 

  22. Li, Z., Liu, X., Chen, W., Shen, F., Bi, H., Ke, G., & Zhang, L. (2022). Uni-fold: An Open-Source Platform for Developing Protein Folding Models Beyond AlphaFold. bioRxiv. doi: https://doi.org/10.1101/2022.08.04.502811 

  23. Lomovskaya O, Lewis K. (1992). Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA. 89(19):8938-42. doi: 10.1073/pnas.89.19.8938.

  24. Lomovskaya O, Lewis K, Matin A. (1995). EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J Bacteriol. 177(9):2328-34. doi: 10.1128/jb.177.9.2328-2334.1995. 

  25. Mason JM, Arndt KM. (2004). Coiled coil domains: stability, specificity, and biological implications. Chembiochem. 5(2):170-6. doi: 10.1002/cbic.200300781. 

  26. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Computational Chemistry 2009, 16: 2785-91. doi: 10.1002/jcc.21256 

  27. Puértolas-Balint, F., Warsi, O., Linkevičius, M., Tang, P.-C., & Andersson, D. I. (2019). Mutations that increase expression of the emrab-tolc efflux pump confer increased resistance to nitroxoline in escherichia coli. Journal of Antimicrobial Chemotherapy, 75(2), 300–308. doi: 10.1093/jac/dkz434 

  28. Quistgaard, E. M., Löw, C., Guettou, F., & Nordlund, P. (2016). Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nature reviews. Molecular cell biology, 17(2), 123–132. doi: 10.1038/nrm.2015.25 

  29. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33(Web Server issue):W363-7. doi: 10.1093/nar/gki481. 

  30. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. (2005). Geometry-based flexible and symmetric protein docking. Proteins. 60(2):224-31. doi: 10.1002/prot.20562. 

  31. Spink WW, Ferris V. (1947). PENICILLIN-RESISTANT STAPHYLOCOCCI: MECHANISMS INVOLVED IN THE DEVELOPMENT OF RESISTANCE. J Clin Invest. 26(3), 379-93. doi: 10.1172/JCI101820. 

  32. Symmons MF, Marshall RL, Bavro VN. (2015). Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol. 6:513. doi: 10.3389/fmicb.2015.00513. 

  33. Tanabe M, Szakonyi G, Brown KA, Henderson PJ, Nield J, Byrne B. (2009). The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem Biophys Res Commun. 380(2):338-42. doi: 10.1016/j.bbrc.2009.01.081. 

  34. Tikhonova EB, Dastidar V, Rybenkov VV, Zgurskaya HI. (2009). Kinetic control of TolC recruitment by multidrug efflux complexes. Proc Natl Acad Sci U S A. 06(38):16416-21. doi: 10.1073/pnas.0906601106. 

  35. Tovchigrechko A, Vakser IA. (2005). Development and testing of an automated approach to protein docking. Proteins. 60(2):296-301. doi: 10.1002/prot.20573. 

  36. Tovchigrechko A, Vakser IA. (2006). GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34(Web Server issue):W310-4. doi: 10.1093/nar/gkl206.

  37. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D. (2021). Highly accurate protein structure prediction for the human proteome. Nature.596(7873):590-596. doi: 10.1038/s41586-021-03828-1. 

  38. Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins. 85(3):435-444. doi: 10.1002/prot.25219. 

  39. Zheng W, Li Y, Zhang C, Zhou X, Pearce R, Bell EW, Huang X, Zhang Y. (2021). Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Proteins. 89(12):1734-1751. doi: 10.1002/prot.26193.