List of Abstracts from Selected Papers

Listed below are the paper abstracts selected for the NYCSEA journl.(ISBN 979-8-89238-262-5)

4 articles are found.

Congratulations! You have successfully made it through and your paper has been selected for the NYCSEA journal(ISBN 979-8-89238-262-5). We wish you all the best as you advance in your continuing research projects.

The Effect of Allura red AC on the Motility and Regeneration Rate of Dugesia tigrina


Abstract: Red 40 dye has been banned in European countries due to rising health concerns. There is evidence that Red 40, also called Allura red AC, can cause hyperactivity in humans along with negatively affecting the colon and causing Early Onset Colorectal cancer in mice. This study aimed to investigate if doses of 0, 15, 30, and 60 microliters of Allura red AC can contribute to negative effects on the phototaxis rate and the rate of regeneration of Dugesia tigrina. It is hypothesized that if Allura red AC is fed to Dugesia tigrina then, it will increase motility, and slow the rate of regeneration. This study was performed using four groups of Dugesia tigrina with 0 µM, 0.125µM, 0.25µM, and 0.5µM of red 40 and measuring the length of the planaria, and the rate of movement of planaria over the course of 31 days. The results of this study show that an increase in Allura red AC exposure causes a decrease in the regeneration rate, an increase in phototaxis, and an increase in mortality. Future research suggests a conversion in dosage and/or form of dye (powder version). Also, recommendations for future research include using a different type of organism such as Drosophila melanogaster. 


References

Byrne, Tom. “Effects of Ethanol on Negative Phototaxis and Motility in Brown Planarians (Dugesia Tigrina).” Neuroscience Letters, vol. 685, Oct. 2018, pp. 102–108, https://doi.org/10.1016/j.neulet.2018.08.030. 

CDC. “What Are the Risk Factors for Colorectal Cancer?” Centers for Disease Control and Prevention, 2019, www.cdc.gov/cancer/colorectal/basic_info/risk_factors.htm. Accessed 4 Mar. 2024. 

Center for Food Safety and Applied Nutrition. “Color Additives History.” U.S. Food and Drug Administration, 3 Nov. 2017, www.fda.gov/industry/color-additives/color-additives-history. Accessed 4 Mar. 2024.

Centers for Disease Control and Prevention. “What Is ADHD?” Centers for Disease Control and Prevention, 27 Sept. 2023, www.cdc.gov/ncbddd/adhd/facts.html. Accessed 4 Mar. 2024. Cleveland Clinic. “Is Red Dye 40 Safe?” Cleveland Clinic, 8 Mar. 2023, health.clevelandclinic.org/red-dye-40. Accessed 4 Mar. 2024. 

Issigonis, Melanie. “Could We Use Planarians to Help Us Understand Human Regeneration?” Morgridge Institute for Research, 24 Dec. 2017, morgridge.org/blue-sky/could-we-use-planarians-to-help-us-understand-human-regeneration/#:~:text=But%2C%20unlike%20planarians%2C%20humans. Accessed 4 Mar. 2024.

Kanarek, Robin B. “Artificial Food Dyes and Attention Deficit Hyperactivity Disorder.” Nutrition Reviews, vol. 69, no. 7, 30 June 2011, pp. 385–391, https://doi.org/10.1111/j.1753-4887.2011.00385.x. 

Newmark, Phillip. “Flatworms at Forefront of Regeneration Research.” Www.nsf.gov, 7 July 2006, 

Paskin, Taylor R., et al. “Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.” PLoS ONE, vol. 9, no. 12, 10 Dec. 2014, p. e114708, https://doi.org/10.1371/journal.pone.0114708. 

“Potential Neurobehavioral Effects of Synthetic Food Dyes in Children.” Ca.gov, 2021, oehha.ca.gov/media/downloads/risk-assessment/report/healthefftsassess041621.p. Accessed 4 Mar. 2024. 

Sagon, Candy. “8 Foods We Eat That Other Countries Ban.” Blogs, 25 June 2013, blog.aarp.org/healthy-living/8-foods-we-eat-that-other-countries-ban. Accessed 4 Mar. 2024.

Sarnat, Harvey B., and Martin G. Netsky. “The Brain of the Planarian as the Ancestor of the Human Brain.” Canadian Journal of Neurological Sciences / Journal Canadien Des Sciences Neurologiques, vol. 12, no. 4, Nov. 1985, pp. 296–302, https://doi.org/10.1017/s031716710003537x. 

Vorhees, C V, et al. “Developmental Toxicity and Psychotoxicity of FD and c Red Dye No. 40 (Allura Red AC) in Rats.” Toxicology, vol. 28, no. 3, 1983, pp. 207–17, www.ncbi.nlm.nih.gov/pubmed/6636206/, 

Walsh, Caroline J., et al. “Obstetric Complications in Mothers with ADHD.” Frontiers in Reproductive Health, vol. 4, 7 Nov. 2022, https://doi.org/10.3389/frph.2022.1040824. Accessed 4 Mar. 2024. 

“What Is Red Dye 40? ADHD and Brain Health | Amen Clinics.” Brain Health Guide to Red Dye #40, 24 Aug. 2023, www.amenclinics.com/blog/brain-health-guide-red-dye-40/#:~:text=The%20use%20of% 20Red%20Dye. Accessed 4 Mar. 2024. 

Wirth, Jennifer. “ADHD Statistics.” Forbes Health, 6 June 2023, www.forbes.com/health/mind/adhd-statistics/#:~:text=An%20estimated%208.7%20milli on%20adults. Accessed 4 Mar. 2024. 

Zhang, Qi, et al. “The Synthetic Food Dye, Red 40, Causes DNA Damage, Causes Colonic Inflammation, and Impacts the Microbiome in Mice.” Toxicology Reports, vol. 11, 1 Dec. 2023, pp. 221–232, www.sciencedirect.com/science/article/pii/S2214750023000926, https://doi.org/10.1016/j.toxrep.2023.08.006. Accessed 19 Sept. 2023.

Virtual Driving Scenario Generation and Sensor Simulation for Perception Algorithm Validation


Abstract: 

The rapid advancement of autonomous driving systems requires robust perception algorithms. Interpreting complex environments and simulation-based testing plays a vital role in validating these algorithms. This research explores the use of the Driving Scenario Designer app in MATLAB® workspace to perform high-fidelity sensor simulation, generate synthetic sensor data, and create dynamic virtual driving scenarios for testing perception systems. To emulate real-world driving conditions, the study focuses on designing scenarios involving multiple actors, including cars, pedestrians, cyclists, and barriers.

We construct and customize scenarios using the app with varying road layouts, traffic patterns, and environmental conditions. Sensor models such as radar, lidar, and cameras are simulated to produce synthetic data that mimics real sensor outputs. The scenarios are exported to the MATLAB® workspace for further analysis, enabling the evaluation of perception algorithms in detecting and tracking objects under different conditions.

Key contributions include a systematic methodology for scenario generation, sensor configuration, and data extraction, along with performance assessments of perception algorithms using synthetic datasets. The results demonstrate the effectiveness of the Driving Scenario Designer in accelerating algorithm development by providing a controlled yet flexible testing environment. This approach reduces reliance on costly physical prototypes while ensuring comprehensive validation across diverse driving conditions. The study highlights the app’s utility in autonomous vehicle research, offering a scalable solution for perception system verification.


References

  1. MathWorks. (2023). Driving Scenario Designer User’s Guide. 

  2. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., & Maurer, M. (2015). Defining and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving. IEEE Intelligent Vehicles Symposium (IV).

  3. Dosovitskiy, A., Ros, G., Codevilla, F., López, A., & Koltun, V. (2017). CARLA: An Open Urban Driving Simulator. Proceedings of the 1st Annual Conference on Robot Learning (CoRL).

  4. Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A Survey of Deep Learning Techniques for Autonomous Driving. Journal of Field Robotics, 37(3), 362-386.

  5. Bansal, M., Krizhevsky, A., & Ogale, A. (2018). Chauffeurnet: Learning to Drive by Imitating the Best and Synthesizing the Worst. Robotics: Science and Systems (RSS).

  6. Geiger, A., Lenz, P., & Urtasun, R. (2012). Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

  7. Rong, G., Shin, B. H., Tabatabaee, H., et al. (2020). LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving. IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).

  8. Janai, J., Güney, F., Behl, A., & Geiger, A. (2020). Computer Vision for Autonomous Vehicles: Problems, Datasets, and State-of-the-Art. Foundations and Trends in Computer Graphics and Vision, 12(1-3), 1-308.

  9. Kato, S., Tokunaga, S., Maruyama, Y., et al. (2018). Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems. ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).

  10. Pendleton, S. D., Andersen, H., Du, X., et al. (2017). Perception, Planning, Control, and Coordination for Autonomous Vehicles. Machines, 5(1), 6.

  11. Chen, C., Seff, A., Kornhauser, A., & Xiao, J. (2015). DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving. IEEE International Conference on Computer Vision (ICCV).

  12. Li, Y., Ibanez-Guzman, J., & Ng, H. K. (2020). Lidar for Autonomous Driving: The Principles, Challenges, and Trends. IEEE Signal Processing Magazine, 37(4), 50-61.

  13. Bojarski, M., Del Testa, D., Dworakowski, D., et al. (2016). End to End Learning for Self-Driving Cars. arXiv preprint arXiv:1604.07316.

  14. Kong, J., Pfeiffer, M., Schildbach, G., & Borrelli, F. (2015). Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design. IEEE Intelligent Vehicles Symposium (IV).

  15. NHTSA. (2021). Automated Driving Systems: A Vision for Safety. National Highway Traffic Safety Administration.

     

     

Water Retention of Small-Scale Green Roofs with Edible Vegetation


Abstract: 

Green roofs (GRs) are typically used to retain stormwater and are increasingly being used to produce food by growing edible vegetation, such as Mad Hatter Peppers (Capsicum baccatum). However, there have been conflicting studies on whether GRs can feasibly produce Capsicum baccatum in GRs compared to in-ground production. To test this, water retention was compared among small-scale models of three different vegetation types: two Sedum setups, two Capsicum baccatum setups, and one bare setup. The models used water storage compartments and moisture retention fabric to increase water retention and to reduce the need for irrigation. There was not a statistically significant difference in water retention between the different vegetation types, and the Capsicum baccatum wilted by the end of the study, so it did not produce food. These results indicate that Sedum should be used in future GRs because they can provide many benefits other than water retention, whereas Capsicum baccatum may not be healthy enough to provide other benefits.


References

Allen, R. G. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements (Vol. 56). FAO. 

Aloisio, J. M., Tuininga, A. R., & Lewis, J. D. (2016). Crop species selection effects on stormwater runoff and edible biomass in an agricultural green roof microcosm. Ecological Engineering, 88, 20–27. https://doi.org/10.1016/j.ecoleng.2015.12.022 

Bateman, J. (2022, September 14). Earth had its 6th-warmest August on record. National Oceanic and Atmospheric Administration.https://www.noaa.gov/news/earth-had-its-6th-warmest-august-on-record#:~:text=Season%20(June%20through%20August)%20%7C%20Year%20to%20date%20(YTD)&text=June%E2%80%93August%202022%20was%20the,10th%2Dwarmest%20winter%20on%20record.  

Berardi, U., GhaffarianHoseini, A. H., & GhaffarianHoseini, A. (2014). State-of-the-art analysis of the environmental benefits of green roofs. Applied Energy, 115, 411–428. https://doi.org/10.1016/j.apenergy.2013.10.047 

Cristiano, E., Deidda, R., & Viola, F. (2021). The role of green roofs in urban water-energy-food-ecosystem nexus: A Review. Science of The Total Environment, 756, 143876. https://doi.org/10.1016/j.scitotenv.2020.143876 

Davitt, J. (2022, August 1). Looking back on a record hot July. Spectrum News NY1. Retrieved October 6, 2022, from https://www.ny1.com/nyc/all-boroughs/weather/2022/07/30/looking-back-on-a-record-hot-july-for-nyc 

Eksi, M., Rowe, D. B., Fernández-Cañero, R., & Cregg, B. M. (2015). Effect of substrate compost percentage on green roof vegetable production. Urban Forestry & Urban Greening, 14(2), 315–322. https://doi.org/10.1016/j.ufug.2015.03.006 

Eksi, M., Sevgi, O., Akburak, S., Yurtseven, H., & Esin, İ. (2020). Assessment of recycled or locally available materials as green roof substrates. Ecological Engineering, 156, 105966. https://doi.org/10.1016/j.ecoleng.2020.105966 

Fai, C. M., Bakar, M. F., Roslan, M. A., Fadzailah, F. A., Idrus, M. F., Ismail, N. F., ... & Basri, H. (2015). Hydrological performance of native plant species within extensive green roof system in Malaysia. ARPN J. Eng. Appl. Sci, 10(15), 6419-6423.

Fioretti, R., Palla, A., Lanza, L. G., & Principi, P. (2010). Green Roof Energy and water related performance in the Mediterranean climate. Building and Environment, 45(8), 1890–1904. https://doi.org/10.1016/j.buildenv.2010.03.001 

Garofalo, G., Palermo, S., Principato, F., Theodosiou, T., & Piro, P. (2016). The influence of hydrologic parameters on the hydraulic efficiency of an extensive green roof in Mediterranean Area. Water, 8(2), 44. https://doi.org/10.3390/w8020044 

Hellies, M., Deidda, R., & Viola, F. (2018). Retention performances of green roofs worldwide at different time scales. Land Degradation & Development, 29(6), 1940–1952. https://doi.org/10.1002/ldr.2947 

Hlodversdottir, A. O., Bjornsson, B., Andradottir, H. O., Eliasson, J., & Crochet, P. (2015). Assessment of flood hazard in a combined sewer system in Reykjavik City Centre. Water Science and Technology, 71(10), 1471–1477. https://doi.org/10.2166/wst.2015.119 

Irmak, S. (2016). Impacts of extreme heat stress and increased soil temperature on plant growth and development. UNL Extension Water Resources.

Jamei, E., Chau, H. W., Seyedmahmoudian, M., & Stojcevski, A. (2021). Review on the cooling potential of green roofs in different climates. Science of The Total Environment, 791, 148407. https://doi.org/10.1016/j.scitotenv.2021.148407 

Martin III, W. D., Kaye, N. B., & Mohammadi, S. (2020). A physics-based routing model for Modular Green Roof Systems. Proceedings of the Institution of Civil Engineers - Water Management, 173(3), 142–151. https://doi.org/10.1680/jwama.18.00094 

Nagase, A., & Dunnett, N. (2012). Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landscape and Urban Planning, 104(3-4), 356–363. https://doi.org/10.1016/j.landurbplan.2011.11.001 

Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A., ... & ASCE Task Committee on Evolutionary Computation in Environmental and Water Resources Engineering. (2010). State of the art for genetic algorithms and beyond in water resources planning and management. Journal of Water Resources Planning and Management, 136(4), 412-432.

Rowe, D.B., & Getter, K.L. (2022) Improving stormwater retention on green roofs. Journal of Living Architecture, 9(1), 20-36. https://doi.org/10.46534/jliv.2022.09.02.002

Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and Challenges – A Review. Renewable and Sustainable Energy Reviews, 90, 757–773. https://doi.org/10.1016/j.rser.2018.04.006 

Samuels, M. L., Witmer, J. A., & Schaffner, A. (2016). Statistics for the life sciences. Pearson College Division.

Signor, R. S., Ashbolt, N. J., & Roser, D. J. (2007). Microbial risk implications of rainfall-induced runoff events entering a reservoir used as a drinking-water source. Journal of Water Supply: Research and Technology-Aqua, 56(8), 515–531. https://doi.org/10.2166/aqua.2007.107 

Villarreal, E. L., & Bengtsson, L. (2005). Response of a sedum green-roof to individual rain events. Ecological Engineering, 25(1), 1–7. https://doi.org/10.1016/j.ecoleng.2004.11.008 

Walters, S., & Stoelzle Midden, K. (2018). Sustainability of urban agriculture: Vegetable production on green roofs. Agriculture, 8(11), 168. https://doi.org/10.3390/agriculture8110168 

Whittinghill, L. J., Rowe, D. B., & Cregg, B. M. (2013). Evaluation of vegetable production on extensive green roofs. Agroecology and Sustainable Food Systems, 37(4), 465–484. https://doi.org/10.1080/21683565.2012.756847 

Whittinghill, L. J., Rowe, D. B., Andresen, J. A., & Cregg, B. M. (2014). Comparison of stormwater runoff from Sedum, native prairie, and vegetable producing green roofs. Urban Ecosystems, 18(1), 13–29. https://doi.org/10.1007/s11252-014-0386-8 

Wu, W., Li, C., Liu, M., Hu, Y., & Xiu, C. (2020). Change of impervious surface area and its impacts on urban landscape: An example of Shenyang between 2010 and 2017. Ecosystem Health and Sustainability, 6(1), 1767511. https://doi.org/10.1080/20964129.2020.1767511

EmrAB-TolC Protein Complex in E. coli: Computational and Experimental Approaches

 


Abstract: 

The CDC reports that over two million people in the United States alone become infected with antibiotic resistant bacteria. This paper studies one of the primary mechanisms of antibiotic resistance, efflux, in Escherichia coli. EmrA and EmrB proteins, belonging to the efflux pump EmrAB-TolC were purified in two types of competent cells to evaluate the methodology of the protein purification procedure. Analysis of each purified protein was completed using a variety of standard wet lab techniques. The structure of the complex was determined using artificial intelligence-based structure prediction software. This project presents effective methods for the purification of EmrAB and presents a model that reveals C9 homo-oligomeric arrangement of subunit EmrA in complex with a dimeric EmrB. Basic ligand binding assays were completed with known substrates in silico. Confirming protein purification methods allow future research to continue in vitro, with the eventual goal of experimentally determining the complex at a high resolution and aid in the future identification of drug targets and development of EmrAB-TolC protein inhibitors.


References

  1. Amaral L, Martins A, Spengler G, & Molnar J (2014). Efflux pumps of Gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front. Pharmacol. 2014 Jan 3;4:168. doi: 10.3389/fphar.2013.00168. 

  2. Anderson AC. (2003). The process of structure-based drug design. Chem Biol. 10(9):787-97. doi: 10.1016/j.chembiol.2003.09.002. 

  3. Anes J, McCusker MP, Fanning S, Martins M. (2015). The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol. 10;6:587. doi: 10.3389/fmicb.2015.00587.

  4. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. (2015). Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 13(1):42-51. doi: 10.1038/nrmicro3380.

  5. Borges-Walmsley MI, Beauchamp J, Kelly SM, Jumel K, Candlish D, Harding SE, Price NC, Walmsley AR. (2003). Identification of oligomerization and drug-binding domains of the membrane fusion protein EmrA. J Biol Chem. 278(15):12903-12. doi: 10.1074/jbc.M209457200. 

  6. Carattoli A. (2013). Plasmids and the spread of resistance. Int J Med Microbiol. 303(6-7):298-304. doi: 10.1016/j.ijmm.2013.02.001.

  7. CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. 

  8. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. (2020) Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure. 28(9):1071-1081.e3. doi: 10.1016/j.str.2020.06.006. 

  9. Dumon-Seignovert L, Cariot G, Vuillard L. (2004). The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif. 37(1):203-6. doi: 10.1016/j.pep.2004.04.025.18

  10. Furukawa H, Tsay JT, Jackowski S, Takamura Y, Rock CO. (1993). Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J Bacteriol. 175(12):3723-9. doi: 10.1128/jb.175.12.3723-3729.1993. 

  11. General protocol for western blotting - bio-rad laboratories. (n.d.). Retrieved from https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6376.pdf

  12. Griffith JM, Basting PJ, Bischof KM, Wrona EP, Kunka KS, Tancredi AC, Moore JP, Hyman MRL, Slonczewski JL. (2019). Experimental Evolution of Escherichia coli K-12 in the Presence of Proton Motive Force (PMF) Uncoupler Carbonyl Cyanide m-Chlorophenylhydrazone Selects for Mutations Affecting PMF-Driven Drug Efflux Pumps. Appl Environ Microbiol. 85(5):e02792-18. doi: 10.1128/AEM.02792-18. PMID: 30578262; PMCID: PMC6384104. 

  13. Grosdidier A, Zoete V, Michielin O. (2011) Fast docking using the CHARMM force field with EADock DSS. J Comput Chem. 32(10):2149-59. doi: 10.1002/jcc.21797.

  14. Grosdidier A, Zoete V, Michielin O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39(Web Server issue):W270-7. doi: 10.1093/nar/gkr366. 

  15. Helling RB, Janes BK, Kimball H, Tran T, Bundesmann M, Check P, Phelan D, Miller C. (2002). Toxic waste disposal in Escherichia coli. J Bacteriol. 184(13):3699-703. doi: 10.1128/JB.184.13.3699-3703.2002. 

  16. Hinchliffe, P., Greene, N.P.., Paterson, N.G., Crow, A., Hughes, C., & Koronakis, V. (2014). Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump, FEBS Letters, 588, doi: 10.1016/j.febslet.2014.06.055

  17. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873):583-589. doi: 10.1038/s41586-021-03819-2. 

  18. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature. 405(6789):914-9. doi: 10.1038/35016007. 

  19. Kozakov D, Beglov D, Bohnuud T, Mottarella S, Xia B, Hall DR, Vajda, S. (2013). How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics. 81(12):2159-66. doi: 10.1002/prot.24403. 

  20. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols. 12(2):255-278. Doi: 10.1038/nprot.2016.169. 

  21. Levy ED, Teichmann S. (2013). Structural, evolutionary, and assembly principles of protein oligomerization. Prog Mol Biol Transl Sci. 117:25-51. doi: 10.1016/B978-0-12-386931-9.00002-7. 

  22. Li, Z., Liu, X., Chen, W., Shen, F., Bi, H., Ke, G., & Zhang, L. (2022). Uni-fold: An Open-Source Platform for Developing Protein Folding Models Beyond AlphaFold. bioRxiv. doi: https://doi.org/10.1101/2022.08.04.502811 

  23. Lomovskaya O, Lewis K. (1992). Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA. 89(19):8938-42. doi: 10.1073/pnas.89.19.8938.

  24. Lomovskaya O, Lewis K, Matin A. (1995). EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J Bacteriol. 177(9):2328-34. doi: 10.1128/jb.177.9.2328-2334.1995. 

  25. Mason JM, Arndt KM. (2004). Coiled coil domains: stability, specificity, and biological implications. Chembiochem. 5(2):170-6. doi: 10.1002/cbic.200300781. 

  26. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Computational Chemistry 2009, 16: 2785-91. doi: 10.1002/jcc.21256 

  27. Puértolas-Balint, F., Warsi, O., Linkevičius, M., Tang, P.-C., & Andersson, D. I. (2019). Mutations that increase expression of the emrab-tolc efflux pump confer increased resistance to nitroxoline in escherichia coli. Journal of Antimicrobial Chemotherapy, 75(2), 300–308. doi: 10.1093/jac/dkz434 

  28. Quistgaard, E. M., Löw, C., Guettou, F., & Nordlund, P. (2016). Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nature reviews. Molecular cell biology, 17(2), 123–132. doi: 10.1038/nrm.2015.25 

  29. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33(Web Server issue):W363-7. doi: 10.1093/nar/gki481. 

  30. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. (2005). Geometry-based flexible and symmetric protein docking. Proteins. 60(2):224-31. doi: 10.1002/prot.20562. 

  31. Spink WW, Ferris V. (1947). PENICILLIN-RESISTANT STAPHYLOCOCCI: MECHANISMS INVOLVED IN THE DEVELOPMENT OF RESISTANCE. J Clin Invest. 26(3), 379-93. doi: 10.1172/JCI101820. 

  32. Symmons MF, Marshall RL, Bavro VN. (2015). Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol. 6:513. doi: 10.3389/fmicb.2015.00513. 

  33. Tanabe M, Szakonyi G, Brown KA, Henderson PJ, Nield J, Byrne B. (2009). The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem Biophys Res Commun. 380(2):338-42. doi: 10.1016/j.bbrc.2009.01.081. 

  34. Tikhonova EB, Dastidar V, Rybenkov VV, Zgurskaya HI. (2009). Kinetic control of TolC recruitment by multidrug efflux complexes. Proc Natl Acad Sci U S A. 06(38):16416-21. doi: 10.1073/pnas.0906601106. 

  35. Tovchigrechko A, Vakser IA. (2005). Development and testing of an automated approach to protein docking. Proteins. 60(2):296-301. doi: 10.1002/prot.20573. 

  36. Tovchigrechko A, Vakser IA. (2006). GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34(Web Server issue):W310-4. doi: 10.1093/nar/gkl206.

  37. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D. (2021). Highly accurate protein structure prediction for the human proteome. Nature.596(7873):590-596. doi: 10.1038/s41586-021-03828-1. 

  38. Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins. 85(3):435-444. doi: 10.1002/prot.25219. 

  39. Zheng W, Li Y, Zhang C, Zhou X, Pearce R, Bell EW, Huang X, Zhang Y. (2021). Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Proteins. 89(12):1734-1751. doi: 10.1002/prot.26193.